

Aircra� Simulators with
Unparalleled Capabili�es

FLAMES® and Unreal® Engine can be used to develop aircraft simulator systems,
including computer generated forces simulations, that provide unparalleled
capabilities and that can be developed quickly and inexpensively.

2

Aircra� Simulators with Unparalleled Capabili�es
This paper compares typical aircra� simulators with enhanced aircra� simulators developed
using FLAMES and Unreal Engine. The design principles presented in this paper also apply to
simulators of vehicles that operate in other domains, such as ground vehicle and ship
simulators.

Typical Aircra� Simulator
The figure below is a diagram of the design of a typical aircra� simulator. The sec�ons that
follow describe each of the major subsystems of this simulator.

Typical Aircra� Simulator

Not all aircra� simulators are designed exactly as shown above, but many have a very similar
design. Examining this design will lay the founda�on for understanding how aircra� simulators
developed using FLAMES and Unreal Engine are different from all other simulators.

Image Generator (IG)

All aircra� simulators have some system for rendering the scene that is visible by the pilot.
Typically, this scene is rendered by an image generator (IG), a stand-alone system designed
specifically for rendering 3-dimensional (3D) scenes as realis�cally as possible. The scene is
rendered on some type of display device or set of devices, such as one or more monitors or
projectors or a virtual-reality (VR) headset.

3

Host Simula�on (HS)

The host simula�on (HS) is typically a stand-alone system that is responsible for simula�ng the
host (mo�on) of the aircra� that is being flown by the pilot. This system responds to controls,
such as a flight s�ck and throtle, that the pilot uses to fly the aircra�. High-fidelity systems may
include a mo�on pla�orm that helps give the pilot the sense that the aircra� is moving.

Computer Generated Forces (CGF) Simula�on

The construc�ve or computer generated forces (CGF) simula�on is responsible for simula�ng all
of the en��es in the simula�on other than the aircra� being flown by the pilot. These could
include friendly and hos�le aircra�, ground threats (such as surface-to-air missile (SAM) sites),
and sta�onary or moving ground targets. The sensors, weapon systems, muni�ons, jammers,
and communica�on devices, etc. of these en��es are also modeled by the CGF simula�on.

On-Board Systems (OBS)

The host simula�on (HS) is usually responsible for modeling the on-board systems (OBS) that
exist on-board a real aircra�, such as sensors, weapon systems, muni�ons, jammers, and
communica�on devices. These systems interact with the en��es that are simulated within the
computer generated forces (CGF) simula�on.

Connec�vity

The subsystems of typical aircra� simulators usually execute on separate computers. Therefore,
network-based communica�on systems are used to allow the subsystems to connect to and
exchange data with each other. O�en, the following standard network communica�on protocols
are o�en used:

• The HS and IG o�en communicate using the Common Image Generator Interface (CIGI).
The state of the host and of all of the en��es simulated within the CGF must be
transmited to the IG using CIGI.

• The CGF and HS o�en communicate using the Distributed Interac�ve Simula�on (DIS)
protocol or the High Level Architecture (HLA). In order to allow the HS on-board systems
(OBS) to interact with the en��es in the CGF simula�on, the proper�es and state of all
the en��es in the CGF simula�on must be con�nuously transmited to the HS.

Using FLAMES and Unreal Engine
The remainder of this paper describes how enhanced aircra� simulators with unparalleled
capabili�es can be developed using FLAMES and Unreal Engine. To provide some background,

4

this sec�on provides a brief overview of how games developed using Unreal Engine can be
directly integrated into FLAMES simula�ons.

There is a litle-known but extremely important fact about the Unreal Editor (the applica�on
from Epic Games that is used to develop Unreal games). In addi�on to building games as
executable programs, the Unreal Editor can also build games as libraries (specifically dynamic
link libraries (DLLs)). To integrate a game into a FLAMES simula�on, the same game project that
is used to build a game executable program is built a second �me to create a game library.

Building a Game as a Library

The FLAMES Unreal Engine op�on allows a game library to be directly integrated into a FLAMES
simula�on. When the simula�on is executed, the game library is executed within the simula�on
as an Unreal game server. As a result, the simula�on can exchange data using Unreal
Mul�player Communica�ons with one or more game executables that are executed as Unreal
game clients.

Integra�ng a Game Library into a FLAMES Simula�on

The ability to integrate Unreal games directly into FLAMES simula�ons allows fundamental
changes in the design of aircra� simulators, as described below.

5

Enhanced Aircra� Simulators
The figures below illustrate two of the ways that FLAMES and Unreal Engine can be used to
enhance the capabili�es of aircra� simulators. One simulator uses an IG that communicates
with the host simula�on (HS) using CIGI. In the other simulator, the HS and the IG are combined
into a single applica�on. The sec�ons that follow describe the major subsystems of these
enhanced simulators.

First Enhanced Simulator – IG That Uses CIGI

Second Enhanced Simulator – Combined HS and IG

6

Image Generator (IG) That Uses CIGI

In the first aircra� simulator displayed above, the IG is developed using Unreal Engine. This
allows the IG to exploit the industry-leading 3D content crea�on and 3D rendering capabili�es
of Unreal Engine. The IG con�nues to communicate with the HS using CIGI and thereby allows
the use of exis�ng, CIGI-compa�ble host simula�ons (HS).

Host Simula�on (HS)

In the first aircra� simulator displayed above, the host simula�on (HS) is very similar to the HS
of a typical aircra� simula�on. However, the HS is simplified and enhanced by moving the
simula�on of the on-board systems (OBS) to the CGF, as described below.

Combined Host Simula�on and Image Generator (HSIG)

In the second aircra� simulator displayed above, the host simula�on (HS) and the image
generator (IG) are developed as a single, combined applica�on (HSIG) using Unreal Engine. This
allows host simula�on and image genera�on to be performed in the same applica�on without
any intervening network communica�ons (which means the use of CIGI is eliminated). In this
simulator, the simula�on of the on-board systems (OBS) is also moved to the CGF, as described
below.

Computer Generated Forces (CGF) Simula�on

The computer generated forces (CGF) simula�on is developed using Ternion’s FLAMES
Simula�on Framework. As in a typical aircra� simulator, the CGF simula�on is responsible for
simula�ng all of the en��es in the simula�on other than the aircra� being flown by the pilot.

One of the unique capabili�es of FLAMES that is exploited in the CGF simula�on is FLAMES’
ability to directly integrate and execute a game developed using Unreal Engine (as described
earlier). One or more instances of the Unreal-based IG or HSIG are executed as Unreal game
clients. Another instance of the same game is executed directly within the FLAMES-based CGF
as an Unreal game server. Within the CGF simula�on, there is zero-latency, near seamless
interac�on between the modeling processes taking place in the FLAMES simula�on and the
processing taking place in the IG or HSIG game server.

On-Board Systems (OBS)

In the enhanced simulators illustrated above, the on-board systems (OBS) that exist on-board a
real aircra�, such as sensors, weapon systems, muni�ons, jammers, and communica�on
devices, are simulated within the CGF simula�on. This allows the OBS to have direct, zero-
latency interac�on with the en��es that are simulated within the CGF simula�on. This also
eliminates that need to transmit the proper�es and state of the en��es in the CGF simula�on to
the HS or HSIG.

7

Connec�vity

In both enhanced aircra� simulators illustrated above, the IG/HSIG server and IG/HSIG clients
communicate using the Unreal Mul�player Communica�on system. All of the state informa�on
for all of the en��es in the CGF is sent to the IG/HSIG clients using this system. In the first
simulator, CIGI is s�ll used to send host state informa�on to the IG.

In both aircra� simulators, the state informa�on for all of the en��es in the CGF does not need
to be sent to the IG/HSIG using DIS or HLA. DIS or HLA is used only to communicate with
external, legacy simula�ons.

In the first aircra� simulator, the one that uses CIGI, the FLAMES client communica�on system is
used to allow the HS to interact with and control the on-board systems (OBS). In the second
simulator, Unreal Mul�player Communica�ons is used to allow the HS to interact with and
control the on-board systems (OBS).

Features and Benefits

This sec�on compares the design of typical aircra� simulators with the design of enhanced
aircra� simulators and explains the features and benefits of the enhanced design.

Open Architecture

The enhanced aircra� simulators are developed using FLAMES and Unreal Engine. Both
products are applica�on-independent and provide an open-architecture framework/pla�orm
for developing custom applica�ons. In addi�on, both the FLAMES Developer and the Unreal
Engine Editor are available for FREE. Further, both FLAMES and Unreal Engine are mature,
polished development frameworks that greatly simplify and reduce the cost of the development
of complex applica�ons. Developing extremely capable applica�ons with FLAMES and Unreal
Engine is very simple and inexpensive when compared to atemp�ng to develop similar
applica�ons from scratch.

Virtual World Modeling and Rendering

The virtual world (terrain, buildings, roads, trees, bodies of water, etc.) must be modeled in
each subsystem of an aircra� simulator. In the IG, the virtual world must support high-
framerate, visually realis�c 3D rendering. In the HS and CGF, the virtual world must support
many different types of mathema�cal opera�ons, such as height-above-terrain, terrain
intersec�on, and line-of-sight masking calcula�ons. The virtual world must also support the
calcula�ons that are performed by ground-vehicle models.

Virtual world modeling presents some very difficult challenges for aircra� simulators. The virtual
world must exist in a format that is op�mized for each subsystem and that is compa�ble with

8

the different internal architectures of each subsystem. However, the virtual world geometry
must be perfectly correlated in each subsystem, otherwise calcula�ons that include the
geometry of the virtual world will produce different results.

There are many approaches to addressing these virtual world modeling challenges, but no
approach is more advanced and more elegant than the approach employed by the enhanced
aircra� simulators described above. In these aircra� simulators, the virtual world in the IG/HSIG
is defined in and managed by Unreal Engine. Because the IG/HSIG is executed directly within
the CGF, the CGF is able to directly use the virtual world in the IG/HSIG. Therefore, there is only
one virtual world that is used in the en�re aircra� simulator system, and virtual world geometry
correla�on issues do not exist.

Connec�vity

As has been explained, typical aircra� simulators o�en use CIGI, DIS, and HLA protocols to allow
data to be exchanged between the IG, HS, and CGF. Developing applica�ons that support CIGI,
DIS, and HLA (especially HLA) is quite complicated, which makes the development expensive,
�me consuming, and prone to error. However, complexity is not the worst aspect of these
protocols. Much more troublesome is their lack of capability. These protocols can work fine for
exchanging the spa�al state of en��es between applica�ons. But they do not provide good
support for exchanging the detailed data that is necessary to support the high-fidelity events
and interac�ons that take place in the real world.

For example, it is difficult to send enough data between the CGF and the HS to allow electronic
warfare to be simulated (such as a self-protec�on jammer on the aircra� in the HS jamming the
radar of an enemy surface-to-air missile system). As another example, it is difficult to get an
explosion that is taking place in the CGF to be communicated to the HS and then to the IG such
that the explosion is rendered realis�cally in the IG. As s�ll another example, if there is a ground
vehicle moving in the CGF, it is difficult to communicate the state of the vehicle to the HS and
the IG such that the IG can display the wheels of the ground vehicle turning and bouncing over
rocks. It is easy to come up with many other examples of detailed data that is difficult to
exchange between the subsystems.

In the enhanced aircra� simulators, the exchange of complex data such as that described in the
previous paragraph is not only possible, it is also rela�vely simple to do because of the unique
and advanced aspects of the design:

• In the case of the first enhanced simulator, the one that uses CIGI, CIGI is used only to
transmit the state of the host. No other informa�on is transmited using CIGI. In the case
of the second enhanced simulator, there is no network communica�on at all between
the HS and the IG, since these two subsystems are combined into one.

9

• Network communica�on between the CGF and the IG/HSIG is performed using Unreal’s
mul�player communica�on system. This system is much more advanced than DIS, HLA,
and CIGI and can easily send the data necessary to render such things as explosions, dust
clouds, and bouncing wheels. This system is also much easier to program due to the
extensive, built-in support provided by Unreal.

• Perhaps most important, the host on-board systems (OBS), such as the sensors, weapon
systems, muni�ons, jammers, and communica�on devices, are modeled in the CGF
together with the systems on-board all the construc�ve en��es in the CGF. Therefore, all
of these systems are able to interact with each other directly without any latency or
intervening network communica�ons. This allows higher fidelity and higher performance
modeling of complex processes, such as weapon engagements and electronic warfare. It
also allows the OBS and the systems on all the construc�ve en��es to be modeled in the
same way, thereby crea�ng a “level playing field” for modeling.

FLAMES Demonstra�on Aircra� Simulator

Beginning with version 22.1 of FLAMES, a complete aircra� simulator with a combined host
simula�on and image generator (HSIG) and a FLAMES CGF simula�on as described in this paper
will be available for FREE in the FLAMES Store. The simulator will be available in a FLAMES
content item that can be downloaded and executed immediately. It will also be available in
source form, including the source code to all of the FLAMES models and the source to the en�re
Unreal Engine game project. This source can be used to learn how to modify your exis�ng
aircra� simulators to support the enhanced capabili�es described in this paper, or it can be used
as the star�ng point for developing your own, new aircra� simulator.

Conclusion

FLAMES and Unreal Engine allow construc�ve and virtual simula�ons to be developed that
support capabili�es that are not available in other simula�ons. In addi�on, the open and
mature architectures of FLAMES and Unreal Engine allow simula�ons to be developed rela�vely
quickly and inexpensively. Learn more about FLAMES and the FLAMES Unreal Engine op�on,
and download the FLAMES Developer for FREE, at flamesframework.com.

https://flamesframework.com/

10 240105

About FLAMES®

FLAMES is a family of commercial off-the-shelf (COTS) so�ware products that provide a
framework for developing custom construc�ve and virtual simula�ons and interfaces between
live, virtual and construc�ve (LVC) simula�ons. The op�onal integra�on with Unreal® Engine
extends FLAMES to provide the ul�mate framework for the crea�on of serious games and
visually stunning, en�ty-level construc�ve and virtual simula�ons. For more informa�on on
FLAMES, visit flamesframework.com.

About Ternion Corpora�on

Ternion Corpora�on is the developer of FLAMES and an expert in developing custom, FLAMES-
based simula�ons for government and commercial organiza�ons worldwide. To learn more
about Ternion’s past projects and how Ternion can help you build your construc�ve and virtual
simula�ons or build them for you, visit ternion.com.

Copyright © 2024 Ternion Corpora�on. All rights reserved. Ternion, FLAMES, and the Ternion logo are registered
trademarks of Ternion Corpora�on. All other trademarks referenced are the property of their respec�ve owners.
Specifica�ons do not represent a guarantee of FLAMES performance and are subject to change without no�ce

http://flamesframework.com/
http://ternion.com/

