

The FLAMES Unreal Engine Op�on

The FLAMES® Unreal Engine Option tightly integrates FLAMES, the world’s most
capable constructive simulation framework, with Unreal® Engine, the world’s most
open and advanced real-time 3D creation tool, to create the ultimate framework
for the creation of serious games and 3D, entity-level constructive and virtual
simulations.

2

The FLAMES Unreal Engine Op�on
The FLAMES Unreal Engine op�on allows games developed using Unreal Engine to be directly
integrated into simula�ons developed using FLAMES. Data is automa�cally shared between the
simula�on and the game to create a single, shared synthe�c environment. This near-seamless
integra�on of FLAMES and Unreal Engine makes all the features of FLAMES and Unreal Engine
available simultaneously in a single applica�on. The powerful, flexible, and open architectures
of the FLAMES Developer and the Unreal Engine Editor allow you to quickly create your own
serious games and construc�ve and virtual simula�ons with stunning capabili�es.

This paper begins with a high-level overview of some of the features and benefits of using
FLAMES and Unreal Engine together. Later in the paper, more detailed informa�on is provided
about how to use the FLAMES Unreal Engine op�on, how FLAMES and Unreal Engine work
together, and how to create your own FLAMES simula�on that integrates an Unreal Engine
game.

What Unreal Engine Brings to FLAMES

The following is a list of some of the features and benefits of Unreal Engine that are available
when an Unreal Engine game is integrated into a FLAMES simula�on.

• Powerful tools for crea�ng 3D worlds and 3D objects
• High-performance 3D rendering capability, including stunning visual and audio effects
• Detailed physics func�ons for simula�ng the movement of objects, especially ground

vehicles and humans
• Detailed physics func�ons for simula�ng collisions, blast effects, environmental effects,

and more
• Robust support for mul�-player games which allows Unreal Engine-based virtual

simulators to integrate with FLAMES-based construc�ve simula�ons with a level of
fidelity, realism, and performance that is not possible with DIS and HLA

• A free game development system, the Unreal Editor, available for download from
unrealengine.com

• An immense library of exis�ng, editable 3D content
• A massive support community and a wide variety of compa�ble third-party products
• All the other powerful features and capabili�es of Unreal Engine

What FLAMES Brings to Unreal Engine
The following is a list of some of the features and benefits of FLAMES that are available when an
Unreal Engine game is integrated into a FLAMES simula�on.

• Robust support for simula�ng the movement of air and space-based vehicles and
muni�ons

3

• Robust support for simula�ng sensors, data processors, weapon systems, and electronic
warfare

• Robust support for simula�ng command, control, communica�ons (C3), and logis�cs
• Human cogni�on modeling that realis�cally simulates real-world behaviors and tac�cs
• Robust support for interfaces to external and real-world systems, including live C3

systems
• A powerful editor for crea�ng and execu�ng scenarios without the need to rebuild the

Unreal Engine game (resul�ng in infinite use cases for a single game)
• Flexible, interac�ve control over players during scenario execu�on
• Simultaneous 2D and 3D views in the editor during scenario edi�ng and execu�on, both

rendered by Unreal Engine
• Complete elimina�on of “terrain correla�on” issues; FLAMES simula�ons use the Unreal

Engine world as the terrain
• A free simula�on development system, the FLAMES Developer, available for download

from flamesframework.com
• A library of exis�ng, editable modeling classes and scenarios
• All the other powerful features and capabili�es of FLAMES

Using the FLAMES Unreal Engine Op�on
It’s easy to install and execute FLAMES and an example, FLAMES-compa�ble Unreal game on
your computer. Just follow the steps below:

1. Follow the instruc�ons at htps://flamesframework.com/ge�ng-started/ to download
and install the FLAMES Launcher and the FLAMES Developer on your computer.

2. Follow the instruc�ons at htps://flamesframework.com/support/installa�on-and-
setup/installing-flames-content/ to download and install the FLAMES Starter Content
and one of the Unreal content items that contains an example, FLAMES-compa�ble
Unreal Engine game, such as the Unreal Tutorial Content or the Unreal Camp Pendleton
Content. As described in these instruc�ons, use the FLAMES Launcher to enable the
FLAMES Unreal Engine op�on and select the Unreal example game that you installed.
(Note that Unreal Engine does not need to be installed on your computer to execute
FLAMES with an Unreal game.)

3. Start FORGE, the FLAMES scenario editor, and open one of the scenarios that was
installed when you installed the Unreal content. Click the Play buton in FORGE to
execute the scenario. (Detailed instruc�ons can be found in the Unreal Example Content
Documenta�on in the topic �tled “Execu�ng Unreal Example Scenarios”. This
documenta�on is included in all Unreal content.)

4. Watch “Your First Hour with FLAMES” training videos on the flamesframework website
to learn how to edit FLAMES scenarios using FORGE. At any �me during scenario edi�ng,
you can click the Play buton to execute the scenario. The Unreal game does not need to
be modified or re-built.

https://flamesframework.com/getting-started/
https://flamesframework.com/support/installation-and-setup/installing-flames-content/
https://flamesframework.com/support/installation-and-setup/installing-flames-content/

4

“Under the Hood” of the FLAMES Unreal Engine Op�on

This sec�on provides a high-level overview of how to create a FLAMES-compa�ble Unreal
Engine game and how a game is integrated and used in FLAMES.

Crea�ng a FLAMES-Compa�ble Unreal Engine Game

FLAMES-compa�ble Unreal games are created using Epic Games’ Unreal Editor, just like any
other Unreal game. However, they are packaged differently. Normally, the output from
packaging a game using the Unreal Editor is an executable program. However, to integrate a
game into FLAMES, the game must be packaged as a dynamic link library (DLL).

The binary version of the Unreal Editor available on the unrealeditor.com website is not able to
package a game as a DLL. To get a version of the Unreal Editor that can package a game as a DLL,
you must download and build the source code to Unreal Engine. Instruc�ons for how to do this
are available in the FLAMES Documenta�on in the topic �tled “Building Unreal Engine”.

The best way to begin crea�ng a FLAMES-Compa�ble game is to start from the Unreal project
(in source form) for one of the example FLAMES-compa�ble Unreal games. You can download
these projects from the FLAMES Store. Two of the projects available in the Store are the Unreal
Tutorial Game Project and the Unreal Camp Pendleton Game Project. Detailed instruc�ons for
downloading and building these projects can be found in the Unreal Example Content
Documenta�on in the topic �tled “Downloading and Building Example Games”.)

The Unreal Example Content Documenta�on provides a detailed descrip�on of the Tutorial
game project beginning in the topic �tled “FLAMESTutorial Game Overview”. You can study this
documenta�on and the Unreal project source to get detailed informa�on about the things that
make a game FLAMES-compa�ble.

Integra�ng an Unreal Game in FLAMES

As explained above, the output from packaging a FLAMES-compa�ble game using the Unreal
Editor is a dynamic link library (DLL). When you download and install Unreal content from the
FLAMES Store, the content includes a packaged game DLL. If you package a custom game using
the Unreal Editor, you create your own game DLL. In either case, when you use the FLAMES
Launcher to enable the FLAMES Unreal Engine op�on, you specify the game (i.e., the game DLL)
that you want to use. Then, when a FLAMES applica�on starts, it automa�cally loads the game
DLL and integrates the game in the applica�on.

5

Simultaneous 2D and 3D Visualiza�on in FORGE Rendered by Unreal Engine

How an Unreal Game is Used in FLAMES

When an Unreal game is loaded and integrated in FORGE, the FLAMES scenario editor, several
addi�onal features and capabili�es are available, including the following:

• The virtual world defined in the game (i.e., the game “level”) is used directly as the
terrain in the simula�on. Because only one world/terrain is defined, “terrain correla�on”
issues do not exist.

• An addi�onal window is available in FORGE called the Unreal View. This window displays
the virtual world in 3D and is rendered directly by the game. This is the standard Unreal
Engine 3D visualiza�on. The Unreal View window is available during scenario edi�ng
(before scenario execu�on starts) and during scenario execu�on. The “camera” of the
Unreal View can be controlled interac�vely, and it can also be controlled dynamically by
players in the scenario during scenario execu�on.

• The 2D view of the scenario in the FORGE main window, the window where most of the
scenario edi�ng takes place, is also rendered by the game. This 2D view is also available
during scenario edi�ng and scenario execu�on. Therefore, FORGE provides a 2D and 3D
view of the scenario simultaneously.

• Players in a scenario can be added, edited, and removed using the powerful and friendly
graphical user interface provided by FORGE. Players exist simultaneously in FLAMES and
in the game and remain fully synchronized at all �mes. Hence, FORGE provides an
interac�ve way to edit a game without having to re-package the game. This can reduce
game development �me by days, weeks, or even months and is truly a “game changer”
(pardon the pun).

6

• Three different types of players can be created, each of which is described in the next
sec�on.

• FLAMES effects (a standard modeling class supported by FLAMES) can directly generate
Unreal damage, impulse, and visual effects within the game.

An Unreal game can be used in another FLAMES applica�on called FIRE. FIRE has no graphical
user interface and is designed to execute scenarios in batch mode or on a server. Unreal is used
in FIRE just like it is used in FORGE except for graphics related opera�ons.

Three Types of Players
When an Unreal game is used in FLAMES, three types of players are supported. In FLAMES,
players are referred to as “Units” (not to be confused with a military unit such as a company or
squadron). For the purposes of this paper, players in an Unreal game are referred to as
“en��es”. For each Unit that exists in a FLAMES scenario, an en�ty of the corresponding type
exists in the game (provided the FLAMES scenario and game are defined properly). The three
types of Units/en��es can be used in any combina�on.

This sec�on provides an overview of each type of Unit/en�ty.

FLAMES Autonomous Units (Unreal Surrogate En��es)

FLAMES Autonomous Units are created in FLAMES and are controlled completely by models
that execute in FLAMES. A corresponding Unreal Surrogate en�ty is created automa�cally in the
Unreal game when the Unit is created. During scenario edi�ng and execu�on, FLAMES
automa�cally updates the spa�al state (posi�on, orienta�on, velocity, etc.) of the en�ty in the
game to mirror the state of the FLAMES Unit.

FLAMES Autonomous Units can take advantage of the excellent support provided by FLAMES for
modeling sensors, data processors, weapon systems, muni�ons, electronic warfare, command,
control, communica�ons (C3), human behavior, tac�cs, and logis�cs. Autonomous Units can
also interact with external and real-world systems, including live C3 systems.

FLAMES also has excellent support for modeling the movement of vehicles that do not have
complex interac�ons with the terrain and that do not collide with other vehicles and objects.
Therefore, it is o�en recommended to simulate air and space vehicles and muni�ons (missiles,
bombs, etc.) as FLAMES Autonomous Units.

Autonomous Units can be created and edited in a scenario without having to rebuild the game.

FLAMES Hybrid Units (Unreal Hybrid En��es)

FLAMES Hybrid Units are very similar to FLAMES Autonomous Units. Hybrid Units are created in
FLAMES and are controlled by models that, with the excep�on of the vehicle/character mo�on
model, execute in FLAMES. A corresponding Unreal Hybrid en�ty is created automa�cally in the
Unreal game when the Unit is created.

7

The vehicle/character mo�on model of a Hybrid Unit is simulated in the game by the
corresponding Hybrid en�ty. During scenario edi�ng and execu�on, FLAMES automa�cally
updates the spa�al state (posi�on, orienta�on, velocity, etc.) of the Hybrid Unit in the scenario
to mirror the state of the Hybrid en�ty in the game.

FLAMES Hybrid Units have all the advanced modeling capability of Autonomous Units with the
added benefits of modeling vehicle movement in Unreal. Unreal has excep�onal support for
modeling the movement of vehicles and characters that have complex interac�ons with the
terrain and that can collide with other vehicles and objects. Therefore, it is o�en recommended
to simulate vehicles and humans that move on the ground/water as FLAMES Hybrid Units.

Hybrid Units can be created and edited in a scenario without having to rebuild the game.

FLAMES Surrogate Units (Unreal Autonomous En��es)

Unreal Autonomous en��es are created in the Unreal game and are controlled by so�ware that
executes in the game. They can be Unreal Players (controlled by a human) or Unreal AI En��es
(controlled by so�ware). FLAMES automa�cally creates corresponding FLAMES Surrogate Units
for each Unreal Autonomous en�ty defined in the game. During scenario edi�ng and execu�on,
FLAMES automa�cally updates the spa�al state (posi�on, orienta�on, velocity, etc.) of the
Surrogate Unit in the scenario to mirror the state of the Autonomous en�ty in the game.

FLAMES Surrogate Units can be detected and engaged by other Units in FLAMES. FLAMES
models other than pla�orm models can also be atached to Surrogate Units which allows
FLAMES modeling to be performed on behalf of the corresponding Unreal Autonomous en�ty.
The main disadvantage of Autonomous en��es is that they cannot be created or edited without
rebuilding the game. Therefore, the use of Unreal Autonomous en��es is usually not
recommended. One notable excep�on is player-controlled en��es. If the en�ty is intended to
be controlled by a human player in an Unreal client applica�on, the en�ty must be an Unreal
Autonomous en�ty.

Mul�player Games

The FLAMES Unreal Engine op�on supports the integra�on of Unreal games that make use of
almost every available feature of Unreal Engine including Unreal's extensive support for
mul�player games. In mul�player games, the game DLL loaded in FORGE or FIRE is executed as
an Unreal "listen server". During execu�on, mul�ple stand-alone Unreal game client
applica�ons can be executed and connected to the server. The server and the clients
communicate using Unreal mul�player network communica�ons, which is superior to DIS and
HLA.

State-of-the art virtual simula�ons can be developed using Unreal Engine. Execu�ng virtual
simula�ons as clients to a FLAMES-based construc�ve simula�on server provides excep�onal
capabili�es. Contact Ternion for more informa�on.

November 2023

Conclusion
FLAMES and Unreal Engine are both leading products in their respec�ve industries. The FLAMES
Unreal Engine op�on �ghtly integrates these products to allow the strengths of each product to
be employed in the crea�on of serious games and 3D, en�ty-level construc�ve and virtual
simula�ons. A more open, powerful, and flexible combina�on of simula�on development tools
is not available anywhere in the world. Download the FLAMES Developer and Unreal Engine, for
free, and see for yourself.

About FLAMES®

FLAMES is a family of commercial off-the-shelf (COTS) so�ware products that provide a
framework for developing custom construc�ve and virtual simula�ons and interfaces between
live, virtual and construc�ve (LVC) simula�ons. The op�onal integra�on with Unreal® Engine
extends FLAMES to provide the ul�mate framework for the crea�on of serious games and
visually stunning, en�ty-level construc�ve and virtual simula�ons. For more informa�on on
FLAMES or to download the free FLAMES Developer, visit flamesframework.com.

About Ternion Corpora�on

Ternion Corpora�on is the developer of FLAMES and an expert in developing custom, FLAMES-
based simula�ons for government and commercial organiza�ons worldwide. To learn more
about Ternion’s past projects and how Ternion can help you build your construc�ve and virtual
simula�ons or build them for you, visit ternion.com.

Copyright © 2023 Ternion Corpora�on. All rights reserved. Ternion, FLAMES, and the Ternion logo are registered
trademarks of Ternion Corpora�on. All other trademarks referenced are the property of their respec�ve owners.
Specifica�ons do not represent a guarantee of FLAMES performance and are subject to change without no�ce.

http://flamesframework.com/
http://ternion.com/

